

Applications of High Resolution Airborne Multispectral Imagery

U.S. Army Engineer Research & Development Center
Topographic Engineering Center
Topography, Imagery, and Geospatial Research Division
Alexandria, Virginia

Michael Campbell Rob Fischer

Airborne Digital Multispectral Imagery

Fort A.P. Hill, Bowling Green, Virginia

15 October 1999, one-meter spatial resolution

Why Airborne?

Flexibility & Cost

Spatial: Lenses and aircraft altitude provide high resolution

(i.e., small pixels)

Spectral: Interchangeable filters provide unique band combinations

Radiometric: Operator control over integration time (shutter speed) and

apertures (f-stop) to ensure optimal image contrast

Temporal: Acquire imagery when you want

Media: Digital

Compare airborne digital multispectral sensor characteristics with:

- aerial photography analogue, limited spectral resolution
- satellite imagery limited spatial resolution, fixed temporal resolution

Wavelengths

MAJOR DIVISIONS of the ELECTROMAGNETIC SPECTRUM

Computerized Airborne Multi-camera Imaging System (CAMIS)

- Four cameras (camera spectral range: 350 900 nm)
- 768 x 576 pixel array
- 16 mm focal length lenses
- Imagery collected @ 6100 ft agl provides ~ 1 m²/pixel
- 25 nm bandpass filters

Band 1: 450 nm (blue) Band 3: 650 nm (red)

Band 2: 550 nm (green) Band 4: 800 nm (near infrared)

Onboard Configuration:

- Cameras
- Pentium II PC with vendor software
- Flatscreen monitor for real-time image display
- Code phase GPS antenna to record nominal coordinate for each frame center
- DC to AC power inverter

Typical Aircraft:

- Cessna 172 Skyhawk
- Navigation using code phase GPS with moving map
- Static camera mount

(Photo displays CAMIS mounted in a Cessna 208 using standard large format aerial camera port.)

False-Color Composite = CAMIS bands 4, 3, & 2 Acquired 10 December 2001

Image depicting distribution of water hyacinth (Eichhornia crassipes)

True-Color Composite = CAMIS bands 3, 2, & 1 Acquired 10 December 2001

Objective: Develop a cost effective methods for periodic image acquisition and processing to delineate invasive aquatic species (e.g., water hyacinth [*Eichhornia crassipes*], water lettuce [*Pistia stratiotes*])

Invasive Aquatic Plant Mapping, COE Jacksonville District

Imagery acquired: 31 January 2001 10 December 2001

Spatial Resolution: one meter

Five study areas

Species of Concern:

- water hyacinth,
- water lettuce,
- hydrilla, and
- others

- Band-to-Band Registration
- Within Frame Radiometric Effects
 - cos⁻⁴
 - vignetting
 - BRDF
- Flightline-to-Flightline Radiometric Normalization

Commercial image processing software typically performs the following geometric corrections:

- Pixel-to-Pixel Registration
- Geometric Rectification

Image Post-Processing (con't)

Frame-to-Frame Registration and Mosaicking

Multispectral Mosaic

Thematic Map – Full Resolution (9,975 polygons)

Thematic Map – MMU (264 polygons)

Thematic Map – MMU & Recoded (198 polygons)

Lake Okeechobee, Satellite Imagery

Acquired 24 May 2002

An example of QuickBird 2 multispectral imagery. The commercial satellite is owned and operated by Digital Globe (Longmont, CO).

Specifications:

Launched on 18 October 2001 Sun-synchronous orbit at 450 km

Spectral Resolution:

Four-band multispectral – blue, green, red, NIR

Panchromatic

Radiometric Resolution:

11-bit

Spatial Resolution:

2.8 m for multispectral

0.7 m for panchromatic

Temporal Resolution:

1 to 3.5 days revisit period

Lake Okeechobee, Cost Estimates

Airborne Imagery

Satellite Imagery

Total Cost for Five Study Sites (~ 70 km²)

Image Acquisition = \$10,000 - 15,000Post-Processing = \$10,000 - 15,000Image Classification:

Field Data = \$3,000 - 5,000Image Processing = \$3,000 - 5,000

Total = \$26,000 - 40,000 \$ 370 - 570 per km² \$ 3.70 - 5.70 per hectare \$ 1.50 - 2.25 per acre

Entire Area ~ 1,000 km² Total Cost ~ \$370,000 – 570,000 Total Cost for Complete Coverage of Western Lake Okeechobee (1,000 km²)

Image Acquisition = \$20,000 - 35,000Image Classification:

Field Data = \$5,000 - 8,000Image Processing = \$3,000 - 5,000

Total = \$28,000 - 48,000 $$28 - 48 \text{ per km}^2$ \$0.28 - 0.48 per hectare\$0.11 - 0.18 per acre

Temporal Problem: When will satellite data be acquired and delivered?

Lake Okeechobee, Fisheating Bay

Hyperspectral imagery acquired using AVSIS

(Airborne VNIR and SWIR Imaging Spectrometer)

- Pushbroom scanning system
- Prism-Grating-Prism (PGP) dispersing component
- 400 1100 nm spectral range (5 nm band width)
- 240 spectral bands

- 12-bit radiometric resolution
- 320 pixel swath width
- ~ 2-meter spatial resolution
- Acquired 10 Dec 2001

Lake Okeechobee, Fisheating Bay

Spectral Properties of Airborne Hyperspectral Imagery

Water Hyacinth - untreated

Water Hyacinth - treated

Wild Taro (Colocasia esculenta)

Wetland Vegetation Mapping, Baltimore

Location of Blackwater Wildlife Refuge

Wetland Vegetation Mapping, Baltimore

Extent of Blackwater Wildlife Refuge and area covered by hyperspectral imagey

Airborne Imaging Spectrometer for Applications (AISA)

Manufactured by Specim (Finland). Operated by 3Di LLC (Easton, Maryland).

Orientation and dates of acquisition for AISA flightlines.

Pushbroom Scanner Data

BLINE7E

Flightline: BLINE7E Date: 7 June 2000

Size: 614 rows x 8344 columns

(5,123,216 pixels)

Number of Background Pixels: 2,360,266

BLINE8W

Flightline: BLINE8W Date: 7 June 2000

Size: 657 rows x 8269 columns

(5,432,733 pixels)

Number of Background Pixels: 2,701,404

Wetland Vegetation Mapping, Baltimore

False-Color Composite = AISA bands 32, 22, & 12

High resolution airborne hyperspectral imagery covering over 100,000 acres of the Blackwater Wildlife Refuge (Cambridge, MD): 4-meter spatial resolution, 38 bands with 3-5nm spectral resolution, 12-bit radiometric resolution, 20 overlapping flightlines.

Wetland Vegetation Mapping, Baltimore

Preliminary Vegetation Classification

Radiometric Distortions

Blackwater Refuge, Cost Estimates

Airborne Hyperspectral Imagery

Total Cost for Wildlife Refuge (~ 400 km²)

Image Acquisition = \$20,000

Post-Processing = \$75,000

Image Classification:

Field Data = \$3,000 - 5,000

Image Processing = \$25,000

Total = \$125,000

\$ 312 per km²

\$ 3.12 per hectare

\$ 1.22 per acre

Airborne Multispectral Imagery

 $$370 - 570 \text{ per km}^2$$

3.70 - 5.70 per hectare

1.50 - 2.25 per acre

Total = \$148,000 - 228,000

Satellite Multispectral Imagery

 $$28 - 48 \text{ per km}^2$$

\$0.28 - 0.48 per hectare

\$0.11 - 0.18 per acre

Total = \$11,200 - 19,200